Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
PLoS Negl Trop Dis ; 16(1): e0010033, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986176

RESUMO

BACKGROUND: Work to control the gambiense form of human African trypanosomiasis (gHAT), or sleeping sickness, is now directed towards ending transmission of the parasite by 2030. In order to supplement gHAT case-finding and treatment, since 2011 tsetse control has been implemented using Tiny Targets in a number of gHAT foci. As this intervention is extended to new foci, it is vital to understand the costs involved. Costs have already been analysed for the foci of Arua in Uganda and Mandoul in Chad. This paper examines the costs of controlling Glossina palpalis palpalis in the focus of Bonon in Côte d'Ivoire from 2016 to 2017. METHODOLOGY/PRINCIPAL FINDINGS: Some 2000 targets were placed throughout the main gHAT transmission area of 130 km2 at a density of 14.9 per km2. The average annual cost was USD 0.5 per person protected, USD 31.6 per target deployed of which 12% was the cost of the target itself, or USD 471.2 per km2 protected. Broken down by activity, 54% was for deployment and maintenance of targets, 34% for tsetse surveys/monitoring and 12% for sensitising populations. CONCLUSIONS/SIGNIFICANCE: The cost of tsetse control per km2 of the gHAT focus protected in Bonon was more expensive than in Chad or Uganda, while the cost per km2 treated, that is the area where the targets were actually deployed, was cheaper. Per person protected, the Bonon cost fell between the two, with Uganda cheaper and Chad more expensive. In Bonon, targets were deployed throughout the protected area, because G. p. palpalis was present everywhere, whereas in Chad and Uganda G. fuscipes fuscipes was found only the riverine fringing vegetation. Thus, differences between gHAT foci, in terms of tsetse ecology and human geography, impact on the cost-effectiveness of tsetse control. It also demonstrates the need to take into account both the area treated and protected alongside other impact indicators, such as the cost per person protected.


Assuntos
Doenças Endêmicas/prevenção & controle , Controle de Insetos/métodos , Inseticidas/farmacologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé , Animais , Chade/epidemiologia , Côte d'Ivoire/epidemiologia , Florestas , Humanos , Controle de Insetos/economia , Insetos Vetores , Trypanosoma brucei gambiense , Tripanossomíase Africana/transmissão , Uganda/epidemiologia
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697238

RESUMO

Pest management practices in modern industrial agriculture have increasingly relied on insurance-based insecticides such as seed treatments that are poorly correlated with pest density or crop damage. This approach, combined with high invertebrate toxicity for newer products like neonicotinoids, makes it challenging to conserve beneficial insects and the services that they provide. We used a 4-y experiment using commercial-scale fields replicated across multiple sites in the midwestern United States to evaluate the consequences of adopting integrated pest management (IPM) using pest thresholds compared with standard conventional management (CM). To do so, we employed a systems approach that integrated coproduction of a regionally dominant row crop (corn) with a pollinator-dependent specialty crop (watermelon). Pest populations, pollination rates, crop yields, and system profitability were measured. Despite higher pest densities and/or damage in both crops, IPM-managed pests rarely reached economic thresholds, resulting in 95% lower insecticide use (97 versus 4 treatments in CM and IPM, respectively, across all sites, crops, and years). In IPM corn, the absence of a neonicotinoid seed treatment had no impact on yields, whereas IPM watermelon experienced a 129% increase in flower visitation rate by pollinators, resulting in 26% higher yields. The pollinator-enhancement effect under IPM management was mediated entirely by wild bees; foraging by managed honey bees was unaffected by treatments and, overall, did not correlate with crop yield. This proof-of-concept experiment mimicking on-farm practices illustrates that cropping systems in major agricultural commodities can be redesigned via IPM to exploit ecosystem services without compromising, and in some cases increasing, yields.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Controle de Insetos/métodos , Insetos , Inseticidas , Polinização , Agricultura/economia , Animais , Biomassa , Citrullus , Controle de Insetos/economia , Resíduos de Praguicidas/análise , Pólen/química , Zea mays
3.
Value Health ; 24(8): 1213-1222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372987

RESUMO

OBJECTIVES: To systematically review the literature on the unit cost and cost-effectiveness of malaria control. METHODS: Ten databases and gray literature sources were searched to identify evidence relevant to the period 2005 to 2018. Studies with primary financial or economic cost data from malaria endemic countries that took a provider, provider and household, or societal perspective were included. RESULTS: We identified 103 costing studies. The majority of studies focused on individual rather than combined interventions, notably insecticide-treated bed nets and treatment, and commonly took a provider perspective. A third of all studies took place in 3 countries. The median provider economic cost of protecting 1 person per year ranged from $1.18 to $5.70 with vector control and from $0.53 to $5.97 with chemoprevention. The median provider economic cost per case diagnosed with rapid diagnostic tests was $6.06 and per case treated $9.31 or $89.93 depending on clinical severity. Other interventions did not share enough similarities to be summarized. Cost drivers were rarely reported. Cost-effectiveness of malaria control was reiterated, but care in methodological and reporting standards is required to enhance data transferability. CONCLUSIONS: Important information that can support resource allocation was reviewed. Given the variability in methods and reporting, global efforts to follow existing standards are required for the evidence to be most useful outside their study context, supplemented by guidance on options for transferring existing data across settings.


Assuntos
Quimioprevenção/economia , Análise Custo-Benefício/economia , Controle de Insetos/economia , Malária/prevenção & controle , Saúde Global , Humanos , Mosquiteiros Tratados com Inseticida/economia , Mosquitos Vetores
4.
PLoS Negl Trop Dis ; 15(8): e0009663, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403426

RESUMO

Tsetse-transmitted Animal African Trypanosomosis (AAT) is one of the most important constraints to livestock development in Africa. Use of trypanocides has been the most widespread approach for the management of AAT, despite the associated drug resistance and health concerns associated with drug metabolites in animal products. Alternative control measures that target tsetse fly vectors of AAT, though effective, have been hard to sustain in part because these are public goods applied area-wide. The International Centre of Insect Physiology and Ecology (icipe) and partners have developed and implemented a novel tsetse repellent collar (TRC) applied on animals to limit contact of tsetse flies and livestock, thereby reducing AAT transmission. The TRC has now advanced to commercialization. A household-level survey involving 632 cattle keeping households, was conducted in Shimba Hills region of Kwale County, where field trials of the TRC have been previously conducted to assess farmers' knowledge, perception, and practices towards the management of tsetse flies, their willingness to pay (WTP) for the TRC, and factors affecting the WTP. Almost all the respondents (90%) reported that tsetse flies were the leading cattle infesting pests in the area. About 22% of these correctly identified at least four AAT clinical signs, and even though many (68%) used trypanocidal drugs to manage the disease, 50% did not perceive the drug as being effective in AAT management (50%). Few respondents (8%) were aware of the harmful effects of trypanocidal drugs. About 89% of the respondents were aware of icipe TRC, and 30% of them were using the field trial collars during the survey. Sixty-three (63%) of them were willing to pay for the TRC at the same cost they spend treating an animal for AAT. On average farmers were willing to pay KES 3,352 per animal per year. Male educated household heads are likely to pay more for the TRC. Moreover, perceived high AAT prevalence and severity further increases the WTP. Wider dissemination and commercialization of the herd-level tsetse control approach (TRC) should be encouraged to impede AAT transmission and thus enhance food security and farm incomes among the affected rural communities. Besides the uptake of TRC can be enhanced through training, especially among women farmers.


Assuntos
Fazendeiros/psicologia , Controle de Insetos/métodos , Repelentes de Insetos/farmacologia , Tripanossomicidas/farmacologia , Tripanossomíase Africana/prevenção & controle , Adulto , Idoso , Animais , Resistência a Medicamentos , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Controle de Insetos/economia , Quênia , Gado/parasitologia , Masculino , Pessoa de Meia-Idade , Percepção , Prevalência , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia
5.
PLoS One ; 16(7): e0254558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283848

RESUMO

Trypanosomiasis is a significant productivity-limiting livestock disease in sub-Saharan Africa, contributing to poverty and food insecurity. In this paper, we estimate the potential economic gains from adopting Waterbuck Repellent Blend (WRB). The WRB is a new technology that pushes trypanosomiasis-transmitting tsetse fly away from animals, improving animals' health and increasing meat and milk productivity. We estimate the benefits of WRB on the production of meat and milk using the economic surplus approach. We obtained data from an expert elicitation survey, secondary and experimental sources. Our findings show that the adoption of WRB in 5 to 50% of the animal population would generate an economic surplus of US$ 78-869 million per annum for African 18 countries. The estimated benefit-cost ratio (9:1) further justifies an investment in WRB. The technology's potential benefits are likely to be underestimated since our estimates did not include the indirect benefits of the technology adoption, such as the increase in the quantity and quality of animals' draught power services and human and environmental health effects. These benefits suggest that investing in WRB can contribute to nutrition security and sustainable development goals.


Assuntos
Controle de Insetos/métodos , Repelentes de Insetos/farmacologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/efeitos dos fármacos , África Subsaariana/epidemiologia , Animais , Bovinos , Análise Custo-Benefício , Humanos , Controle de Insetos/economia , Repelentes de Insetos/economia , Inseticidas/economia , Inseticidas/farmacologia , Gado/parasitologia , Tripanossomíase Africana/economia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/patogenicidade
6.
J Econ Entomol ; 114(2): 868-874, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33704453

RESUMO

Yellowjackets are notable pests of humans due to their opportunistic foraging behaviors, painful stings, and potential for causing dangerous allergic reactions. Baited traps provide a useful supplement for controlling yellowjackets compared with nest treatments, which are often dangerous, time consuming, costly, and do little to prevent nuisance interactions between humans and foragers. This study compares three homemade yellowjacket traps and three commercially available traps in Lake County, California, to determine efficacy and cost benefit. Traps were set at five sites and randomly rotated between six plots per site and baits were changed every 2 wk per commercial manufacturer recommendations. Cost benefit was determined using material and bait cost, as well as bait change frequency and overall trap efficacy. Yellowjacket count data were analyzed using a hurdle model. Traps compared included the Rescue! Yellowjacket trap, the Rescue! Wasp, Hornet, and Yellowjacket trap, the Victor Yellowjacket trap, a homemade bottle trap, jar trap, and homemade jug trap. The total number of yellowjackets collected was 33,321. The trap that collected the highest number of yellowjackets was the Rescue! Yellowjacket trap (n = 19,257) and the trap that collected the fewest yellowjackets was the jar trap (n = 65). The Rescue! Yellowjacket trap was the most cost-effective, calculated at approximately $0.40/100 yellowjackets collected. The jar trap was the least cost-effective, calculated at approximately $31.10/100 yellowjackets collected. The Rescue! Yellowjacket trap was overall the most effective and cost-effective trap evaluated for Lake County, California.


Assuntos
Controle de Insetos/economia , Controle de Insetos/métodos , Vespas , Animais , California , Lagos
7.
Parasit Vectors ; 14(1): 98, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546756

RESUMO

BACKGROUND: Vectorial transmission is the principal path of infection by Trypanosoma cruzi, the parasite that causes Chagas disease. In Argentina, Triatoma infestans is the principal vector; therefore, vector control is the main strategy for the prevention of this illness. The Provincial Program of Chagas La Rioja (PPCHLR) carries out entomological evaluation of domiciliary units (DUs) and spraying of those where T. infestans is found. The lack of government funds has led to low visitation frequency by the PPCHLR, especially in areas with a low infestation rate, which are not prioritized. Therefore, seeking possible alternatives to complement control activities is necessary. Involving householders in entomological evaluation could be a control alternative. The major objective was to determine the cost of entomological evaluation with and without community participation. METHODS: For entomological evaluation without community participation, PPCHLR data collected in February 2017 over 359 DUs of the Castro Barros Department (CBD) were used. For entomological evaluation with community participation, 434 DUs of the same department were selected in November 2017. Each householder was trained in collecting insects, which were kept in labeled plastic bags, recovered after 2 weeks, and analyzed in the laboratory for the presence of T. cruzi. Using householders' collection data, a spatial scan statistic was used to detect clusters of different T. infestans infestations. Entomological evaluation costs with and without community participation related to the numbers of DUs visited, DUs evaluated, and DUs sprayed were calculated and compared between methodologies. In addition, the number of DUs evaluated of the DUs visited was compared. RESULTS: According to the results, the triatomines did not show evidence of T. cruzi infection. Spatial analysis detected heterogeneity of T. infestans infestation in the area. Costs related to the DUs visited, evaluated, and sprayed were lower with community participation (p < 0.05). In addition, more DUs were evaluated in relation to those visited and a greater surface area was covered with community participation. CONCLUSION: Participation of the community in the infestation survey is an efficient complement to vertical control, allowing the spraying to be focused on infested houses and thus reducing the PPCHLR's costs and intervention times.


Assuntos
Participação da Comunidade , Controle de Insetos/métodos , Insetos Vetores/parasitologia , Triatoma/parasitologia , Animais , Argentina/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Entomologia/economia , Entomologia/métodos , Habitação , Humanos , Controle de Insetos/economia , Inseticidas , População Rural , Trypanosoma cruzi/patogenicidade
8.
PLoS Negl Trop Dis ; 14(10): e0008774, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33079934

RESUMO

Visceral Leishmaniasis (VL) due to Leishmania donovani is a neglected protozoan parasitic disease in humans, which is usually fatal if untreated. Phlebotomus orientalis, the predominant VL vector in East Africa, is a highly exophilic/exophagic species that poses a major challenge to current Integrated Vector Management (IVM). Here we report results of pilot studies conducted in rural villages in Gedarif state, Sudan, to evaluate outdoor residual spraying of 20mg active ingredient (a.i.) /m2 deltamethrin insecticide applied to the characteristic household compound boundary reed fence and to the outside of household buildings (Outdoor Residual Insecticide Spraying, ODRS), and as an alternative, spraying restricted to the boundary fence only (Restricted Outdoor Residual Insecticide Spraying, RODRS). Four to six clusters of 20 households were assigned to insecticide treatments or control in three experiments. Changes in sand fly numbers were monitored over 2,033 trap-nights over 43-76 days follow-up in four sentinel houses per cluster relative to unsprayed control clusters. Sand fly numbers were monitored by sticky traps placed on the ground on the inside ("outdoor") and the outside ("peridomestic") of the boundary fence, and by CDC light traps suspended outdoors in the household compound. The effects of ODRS on sand fly numbers inside sleeping huts were monitored by insecticide knockdown. After a single application, ODRS reduced P. orientalis abundance by 83%-99% in outdoor and peridomestic trap locations. ODRS also reduced numbers of P. orientalis found resting inside sleeping huts. RODRS reduced outdoor and peridomestic P. orientalis by 60%-88%. By direct comparison, RODRS was 58%-100% as effective as ODRS depending on the trapping method. These impacts were immediate on intervention and persisted during follow-up, representing a large fraction of the P. orientalis activity season. Relative costs of ODRS and RODRS delivery were $5.76 and $3.48 per household, respectively. The study demonstrates the feasibility and high entomological efficacy of ODRS and RODRS, and the expected low costs relative to current IVM practises. These methods represent novel sand fly vector control tools against predominantly exophilic/exophagic sand fly vectors, aimed to lower VL burdens in Sudan, with potential application in other endemic regions in East Africa.


Assuntos
Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Leishmaniose Visceral/transmissão , Phlebotomus/efeitos dos fármacos , África Oriental/epidemiologia , Animais , Feminino , Humanos , Controle de Insetos/economia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Inseticidas/economia , Leishmania donovani/fisiologia , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Masculino , Phlebotomus/parasitologia , Phlebotomus/fisiologia , Estações do Ano
9.
Parasit Vectors ; 13(1): 419, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795375

RESUMO

BACKGROUND: Since 2012, the World Health Organisation and the countries affected by the Gambian form of human African trypanosomiasis (HAT) have been committed to eliminating the disease, primarily through active case-finding and treatment. To interrupt transmission of Trypanosoma brucei gambiense and move more rapidly towards elimination, it was decided to add vector control using 'tiny targets'. Chad's Mandoul HAT focus extends over 840 km2, with a human population of 39,000 as well as 14,000 cattle and 3000 pigs. Some 2700 tiny targets were deployed annually from 2014 onwards. METHODS: A protocol was developed for the routine collection of tsetse control costs during all field missions. This was implemented throughout 2015 and 2016, and combined with the recorded costs of the preliminary survey and sensitisation activities. The objective was to calculate the full costs at local prices in Chad. Costs were adjusted to remove research components and to ensure that items outside the project budget lines were included, such as administrative overheads and a share of staff salaries. RESULTS: Targets were deployed at about 60 per linear km of riverine tsetse habitat. The average annual cost of the operation was USD 56,113, working out at USD 66.8 per km2 protected and USD 1.4 per person protected. Of this, 12.8% was an annual share of the initial tsetse survey, 40.6% for regular tsetse monitoring undertaken three times a year, 36.8% for target deployment and checking and 9.8% for sensitisation of local populations. Targets accounted for 8.3% of the cost, and the cost of delivering a target was USD 19.0 per target deployed. CONCLUSIONS: This study has confirmed that tiny targets provide a consistently low cost option for controlling tsetse in gambiense HAT foci. Although the study area is remote with a tsetse habitat characterised by wide river marshes, the costs were similar to those of tiny target work in Uganda, with some differences, in particular a higher cost per target delivered. As was the case in Uganda, the cost was between a quarter and a third that of historical target operations using full size targets or traps.


Assuntos
Custos e Análise de Custo , Controle de Insetos , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Chade/epidemiologia , Humanos , Controle de Insetos/economia , Controle de Insetos/métodos , Insetos Vetores/parasitologia , Inseticidas/economia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia
11.
PLoS Negl Trop Dis ; 13(6): e0007472, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194754

RESUMO

BACKGROUND: Human transmission of Chagas disease (CD) most commonly occurs in domiciliary spaces where triatomines remain hidden to feed on blood sources during inhabitants' sleep. Similar to other neglected tropical diseases (NTDs), sustainable control of CD requires attention to the structural conditions of life of populations at risk, in this case, the conditions of their living environments. Considering socio-cultural and political dynamics involved in dwellings' construction, this study aimed to explore social factors that contribute or limit sustainability of CD's prevention models focused on home improvement. METHODS AND MAIN FINDINGS: Using Healthy Homes for Healthy Living (HHHL)-a health promotion strategy focused on improvement of living environments and system-based health promotion-as a reference, a qualitative study was conducted. Research participants were selected from three rural communities of a CD endemic region in southern Ecuador involved in HHHL's refurbishment and reconstruction interventions between 2013 and 2016. Folowing an ethnographic approach, data were collected through interviews, participant observation, informal conversations and document analysis. Our results indicate that the HHHL model addressed risk factors for CD at the household level, while simultaneously promoting wellbeing at emotional, economic and social levels in local communities. We argue that sustainability of the CD prevention model proposed by HHHL is enhanced by the confluence of three factors: systemic improvement of families' quality of life, perceived usefulness of control measures, and flexibility to adapt to emerging dynamics of the context. CONCLUSION: HHHL's proposed home improvement, facilitated through system-based rather than disease specific health promotion processes, enhances agency in populations at risk and facilitates community partnerships forged around CD prevention. Although an independent analysis of cost-effectiveness is recommended, structural poverty experienced by local families is still the most important factor to consider when evaluating the sustainability and scalability of this model.


Assuntos
Doença de Chagas/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Características da Família , Controle de Insetos/economia , Controle de Insetos/métodos , Fatores Socioeconômicos , Adolescente , Adulto , Idoso , Doença de Chagas/epidemiologia , Equador/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População Rural
12.
Proc Natl Acad Sci U S A ; 116(13): 6473-6481, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30833386

RESUMO

Bed bugs have reemerged in the United States and worldwide over recent decades, presenting a major challenge to both public health practitioners and housing authorities. A number of municipalities have proposed or initiated policies to stem the bed bug epidemic, but little guidance is available to evaluate them. One contentious policy is disclosure, whereby landlords are obligated to notify potential tenants of current or prior bed bug infestations. Aimed to protect tenants from leasing an infested rental unit, disclosure also creates a kind of quarantine, partially and temporarily removing infested units from the market. Here, we develop a mathematical model for the spread of bed bugs in a generalized rental market, calibrate it to parameters of bed bug dispersion and housing turnover, and use it to evaluate the costs and benefits of disclosure policies to landlords. We find disclosure to be an effective control policy to curb infestation prevalence. Over the short term (within 5 years), disclosure policies result in modest increases in cost to landlords, while over the long term, reductions of infestation prevalence lead, on average, to savings. These results are insensitive to different assumptions regarding the prevalence of infestation, rate of introduction of bed bugs from other municipalities, and the strength of the quarantine effect created by disclosure. Beyond its application to bed bugs, our model offers a framework to evaluate policies to curtail the spread of household pests and is appropriate for systems in which spillover effects result in highly nonlinear cost-benefit relationships.


Assuntos
Percevejos-de-Cama , Revelação , Controle de Insetos/métodos , Controle de Insetos/normas , Políticas , Animais , Percevejos-de-Cama/patogenicidade , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Características da Família , Habitação , Humanos , Renda , Controle de Insetos/economia , Modelos Teóricos , Prevalência , Quarentena , Sensibilidade e Especificidade
13.
J Econ Entomol ; 112(1): 341-348, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462317

RESUMO

Current assessments from the U.S. Environmental Protection Agency suggest that some current insecticides may be lost or severely restricted in the near future. An experiment was conducted from 2014 to 2015 at two locations in Mississippi to determine the impact of losses of insecticide classes on integrated pest management of insect pests in cotton. The treatments included cotton treated with all available classes of insecticides, cotton treated with all classes except neonicotinoids, cotton treated with all classes except pyrethroids, cotton treated with all classes except carbamates and organophosphates, and an untreated control. Plots were scouted weekly and insecticide applications were made with the most efficacious and economical insecticides for each treatment when that treatment reached threshold for a particular insect pest(s). The primary insects at both locations were tobacco thrips and tarnished plant bugs. Thrips pressure was similar at both locations and generally showed that all insecticide treatments provided a similar level of protection compared with the untreated control. At the Stoneville location where tarnished plant bug pressure was greatest, cotton yields and economic returns differed between plots where all classes of insecticides were applied compared with the untreated control and where neonicotinoids were excluded. However, in Starkville where tarnished plant bug pressure was less, there were no differences among treatments. Although yield and economic returns were similar in high tarnished plant bug pressure areas when using all classes compared with managing without pyrethroids or organophosphates, a rotation among all insecticide classes should be beneficial for resistance management in Mid-South cotton production.


Assuntos
Produtos Agrícolas/economia , Heterópteros , Controle de Insetos/normas , Inseticidas , Animais , Gossypium , Controle de Insetos/economia , Mississippi
14.
Parasit Vectors ; 11(1): 154, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514668

RESUMO

BACKGROUND: Animal African trypanosomiasis (AAT) and its tsetse vector are responsible for annual losses estimated in billions of US dollars ($). Recent years have seen the implementation of a series of multinational interventions. However, actors of AAT control face complex resource allocation decisions due to the geographical range of AAT, diversity of ecological and livestock systems, and range of control methods available. METHODS: The study presented here integrates an existing tsetse abundance model with a bio-economic herd model that captures local production characteristics as well as heterogeneities in AAT incidence and breed. These models were used to predict the impact of tsetse elimination on the net value of cattle production in the districts of Mambwe, in Zambia, and Faro et Déo in Cameroon. The net value of cattle production under the current situation was used as a baseline, and compared with alternative publicly funded control programmes. In Zambia, the current baseline is AAT control implemented privately by cattle owners (Scenario Z0). In Cameroon, the baseline (Scenario C0) is a small-scale publicly funded tsetse control programme and privately funded control at farm level. The model was run for 10 years, using a discount rate of 5%. RESULTS: Compared to Scenario C0, benefit-cost ratios (BCR) of 4.5 (4.4-4.7) for Scenario C1 (tsetse suppression using insecticide treatment of cattle (ITC) and traps + maintenance with ITC barrier), and 3.8 (3.6-4.0) for Scenario C2 (tsetse suppression using ITC and traps + maintenance with barrier of targets), were estimated in Cameroon. For Zambia, the benefit-cost ratio calculated for Scenarios Z1 (targets, ITC barrier), Z2 (targets, barrier traps), Z3 (aerial spraying, ITC barrier), and Z4 (aerial spraying, barrier traps) were 2.3 (1.8 - 2.7), 2.0 (1.6-2.4), 2.8 (2.3-3.3) and 2.5 (2.0-2.9), respectively. Sensitivity analysis showed that the profitability of the projects is relatively resistant to variations in the costs of the interventions and their technical efficiency. CONCLUSIONS: It is envisioned that the methodologies presented here will be useful for the evaluation and design of existing and future control programmes, ensuring they have tangible benefits in the communities they are targeting.


Assuntos
Doenças dos Bovinos/prevenção & controle , Controle de Doenças Transmissíveis/economia , Análise Custo-Benefício , Controle de Insetos/economia , Tripanossomíase Bovina/prevenção & controle , Moscas Tsé-Tsé/parasitologia , África Subsaariana/epidemiologia , Animais , Camarões/epidemiologia , Bovinos , Doenças dos Bovinos/economia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Humanos , Controle de Insetos/métodos , Controle de Insetos/estatística & dados numéricos , Inseticidas/administração & dosagem , Inseticidas/economia , Modelos Econômicos , Tripanossomíase Bovina/economia , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/parasitologia , Zâmbia/epidemiologia
15.
Bull Math Biol ; 80(4): 788-824, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29404878

RESUMO

Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by [Formula: see text]-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.


Assuntos
Controle de Insetos/economia , Controle de Insetos/métodos , Insetos Vetores , Modelos Biológicos , Animais , Doença de Chagas/economia , Doença de Chagas/prevenção & controle , Custos e Análise de Custo , Habitação , Humanos , Inseticidas/administração & dosagem , Inseticidas/economia , Conceitos Matemáticos , Modelos Econômicos
16.
J Econ Entomol ; 111(2): 689-699, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29385499

RESUMO

Corn rootworm remains the key pest of maize in the United States. It is managed largely by Bt corn hybrids, along with soil insecticides and neonicotinoid seed treatments (NSTs), the latter of which are applied to virtually all conventionally (non-Bt) produced maize. Frequently, more than one of these pest-management approaches is employed at the same time. To determine the utility and relative contributions of these various approaches, a meta-analysis was conducted on plant health and pest damage metrics from 15 yr of insecticide efficacy trials conducted on Indiana maize to compare the pest-protection potential of NSTs to that of other insecticides and Bt hybrids. The probability of recovering the insecticide cost associated with each treatment was also calculated when possible. With the exception of early-season plant health (stand counts), in which the NSTs performed better than all other insecticides, the vast majority of insecticides performed similarly in all plant health metrics, including yield. Furthermore, all tested insecticides (including NSTs) reported a high probability (>80%) of recovering treatment costs. Given the similarity in performance and probability of recovering treatment costs, we suggest NSTs be optional for producers, so that they can be incorporated into an insecticide rotation when managing for corn rootworm, the primary Indiana corn pest. This approach could simultaneously reduce costs to growers, lower the likelihood of nontarget effects, and reduce the risk of pests evolving resistance to the neonicotinoid insecticides.


Assuntos
Besouros , Controle de Insetos/economia , Inseticidas/economia , Neonicotinoides/economia , Zea mays , Animais , Indiana , Inseticidas/administração & dosagem , Larva , Neonicotinoides/administração & dosagem
17.
J Econ Entomol ; 111(1): 10-15, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29281077

RESUMO

Neonicotinoid insecticides are currently one of two classes of chemicals available as a seed treatment for growers to manage early season insect pests of cotton, Gossypium hirsutum L. (Malvales: Malvaceae), and they are used on nearly 100% of cotton hectares in the midsouthern states. An analysis was performed on 100 seed-treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoid seed treatments in cotton production systems. The analysis compared seed treated with neonicotinoid insecticides seed treatments plus a fungicide with seed only treated with fungicide. When analyzed by state, cotton yields were significantly greater when neonicotinoid seed treatments were used compared with fungicide-only treatments. Cotton treated with neonicotinoid seed treatments yielded 123, 142, 95, and 104 kg ha-1, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments provided an additional 115 kg lint ha-1 comparedwith fungicide only treated seed. Average net returns from cotton with a neonicotinoid seed treatment were $1,801 per ha-1 compared with $1,660 per ha-1 for cottonseed treated with fungicide only. Economic returns for cotton with neonicotinoid seed treatments were significantly greater than cottonseed treated with fungicide only in 8 out of 15 yr representing every state. These data show that neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South cotton compared with fungicide only treated seed.


Assuntos
Fungicidas Industriais , Controle de Insetos/métodos , Inseticidas , Neonicotinoides , Arkansas , Proteção de Cultivos/economia , Proteção de Cultivos/métodos , Gossypium/crescimento & desenvolvimento , Controle de Insetos/economia , Louisiana , Mississippi , Sementes/fisiologia , Tennessee
18.
Environ Entomol ; 47(1): 93-106, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29186376

RESUMO

The pea leaf weevil (PLW), Sitona lineatus L., is a pest of field pea (Pisum sativum L.) and faba bean (Vicia faba L.) that recently invaded the Canadian Prairie Provinces. Although most damage is done by larvae that feed on root nodules, adults are easier to monitor than larvae. Both male and female weevils respond to a male-produced aggregation pheromone and to volatiles released by host plants. The current study tests the attractiveness of synthetic aggregation pheromone, 4-methyl-3,5-heptanedione, and host plant volatiles linalool, (Z)-3-hexenol, and (Z)-3-hexenyl acetate to PLWs in spring when weevils are reproductively active and in fall when weevils seek overwintering sites. Different combinations of semiochemical lures at various doses, released from a variety of devices were tested in pitfall traps. Semiochemical-baited traps captured both male and female weevils in both seasons but the sex ratio varied with season. Weevils did not respond in a dose-dependent manner to pheromone, as all pheromone lures were equally attractive. Pheromone release rate was determined by the release device and not the pheromone dose in the lure. The addition of plant volatiles sometimes increased weevil captures but plant volatiles alone were not attractive to PLW adults. An additional study tested the effect of trap type on weevil capture. Of the 12 different trap types tested, pheromone-baited pitfall traps were most successful in attracting and retaining weevils. Bycatch of other Sitona species was limited to a few specimens of the sweet clover weevil, Sitona cylindricollis Fahraeus.


Assuntos
Quimiotaxia , Controle de Insetos/métodos , Feromônios/farmacologia , Gorgulhos/fisiologia , Acetatos/farmacologia , Alberta , Animais , Feminino , Controle de Insetos/economia , Masculino , Densidade Demográfica , Estações do Ano
19.
Pest Manag Sci ; 74(1): 46-58, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28628265

RESUMO

BACKGROUND: Preventive management of locust plagues works in some cases but still fails frequently. The role of funding institution awareness was suggested as a potential facilitating factor for cyclic locust plagues. We designed a multi-agent system to represent the events of locust plague development and a management system with three levels: funding institution, national control unit and field teams. A sensitivity analysis identified the limits and improvements of the management system. RESULTS: The model generated cyclic locust plagues through a decrease in funding institution awareness. The funding institution could improve its impact by increasing its support by just a few percent. The control unit should avoid hiring too many field teams when plagues bring in money, in order to ensure that surveys can be maintained in times of recession. The more information the teams can acquire about the natural system, the more efficient they will be. CONCLUSION: We argue that anti-locust management should be considered as a complex adaptive system. This not only would allow managers to prove to funders the random aspect of their needs, but would also enable funders and decision-makers to understand and integrate their own decisions into the locust dynamics that still regularly affect human populations. © 2017 Society of Chemical Industry.


Assuntos
Financiamento de Capital , Gafanhotos , Controle de Insetos/economia , Controle de Insetos/métodos , Animais , Controle de Insetos/instrumentação , Modelos Teóricos
20.
J Econ Entomol ; 111(1): 187-192, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29177425

RESUMO

Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn.


Assuntos
Proteção de Cultivos/métodos , Fungicidas Industriais/administração & dosagem , Controle de Insetos/economia , Inseticidas/administração & dosagem , Neonicotinoides/administração & dosagem , Zea mays , Proteção de Cultivos/economia , Sudeste dos Estados Unidos , Tennessee , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...